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The development of the boundary layer on the upper surface of a horizontal flat 
plate in a non-diffusive, stratified flow is described. It is shown that the flow can 
be characterized by two basic parameters, the Reynolds (RL) and Russell (RuL) 
numbers, and that, depending on the relative magnitude of these two parameters, 
three different regimes of flow can be defined. The delineation of these regimes 
and the description of the flow in each of them is obtained by deriving a uni- 
formly valid first approximation to the Boussinesq equations of motion for a flow 
contained in the two-dimensional parameter space Ru, > 0, RL > 1 .  The critical 
stratification for the self-blocking of a horizontal boundary layer is shown to be 
given by the condition RuL = O(Ri) .  

1. Introduction 
Stratified flows in a gravitational field exhibit many remarkable phenomena 

which are nonexistent in the flow of homogeneous fluids. The development of the 
boundary layer on a horizontal plate is one example. When the stratification is 
large and the motion of the fluid is slow, a boundary layer whose thickness 
decreases in the downstream direction appears and a viscous wake exists upstream 
of the plate. This is in striking contrast to the familiar downstream growing 
boundary layer and downstream viscous wake existing when the fluid is homo- 
geneous. 

Long (1 959) first observed experimentally and described theoretically the 
existence of a viscous wake with a multiple jet-like structure upstream of a body 
moving horizontally in a stratified fluid. He derived a similarity solution which is 
valid far upstream of an obstacle and showed that velocity perturbations relative 
to the horizontal free stream decay algebraically (d) with distance measured 
upstream from the obstacle. The solution characterizes the blocking of the flow 
ahead of a body. 

Martin (1966) and Martin & Long (1968) subsequently investigated the boun- 
dary layer above a slowly moving horizontal plate under conditions for which an 
upstream wake occurred. Their experiments, as well as those performed by Pao 
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(1968), showed the remarkable result that the boundary-layer thickness de- 
creased in the downstream direction. They were able to describe this flow 
structure theoretically by solving the equations of motion in which the advective 
terms and density diffusion were neglected. They also demonstrated that, when 
density diffusion is allowed, the diffusion boundary layer continues to  grow in 
the downstream direction just as in the case of homogeneous flows. 

The purpose of this investigation is to provide a parametric study of the 
influence of density stratification on the development and structure of horizontal 
boundary-layer regions. The appearance of upstream wakes and upstream 
growing boundary layers implies that a critical stratification exists for which the 
thickness of a downstream growing boundary layer becomes sufficiently large to 
induce blocking. Blocking of a flow ahead of an obstacle can be understood on the 
basis of energy considerations, but the occurrence of a self-blocking due solely to 
the action of viscosity is more difficult to understand. The establishment of a 
criterion for determining which boundary-layer structure appears for specified 
flow conditions is one of the objectives of this study. 

Another interesting aspect of boundary layers in stratified media concerns the 
coupling between the viscous boundary layer and the outer inviscid flow. From 
existing studies of boundary layers in homogeneous flows, we know that the boun- 
dary layer displaces the outer flow in a direction transverse to the external flow. 
Since stratification effectively inhibits vertical motions, the question arises as to 
the interaction between the outer stratified flow and a horizontal boundary layer. 
Furthermore, since any non-trivial stratified flow is rotational, the boundary- 
layer induced perturbation on the external flow establishes a possible vorticity 
interaction with the boundary layer. These effects are investigated for the flow 
over a horizontal plate by deriving a uniformly valid solution to first order, with 
the magnitude of the density stratification Id lnp/dx,l appearing as a parameter. 

2. Formulation 
We consider the development of a viscous boundary layer on the upper surface 

ofa horizontal flat plate of length L in a stably stratified flow (as shownin figure 1). 
Taking the viscosity pa, the specific heat cp,, and the thermal conductivity k, 
to be constant, the dimensionless equations of motion for steady, low speed 
( M z  < 1; M = Mach number), thermally stratified flow are 

V . ( p q )  = 0, 
1 

p ( q - V ) q  = - v p -  f - f i  - - v x (V x q), 
FL RL 

and P = P ( T ) .  (4) 

The equations have been made dimensionless by scaling the independent variables 
with the plate length L, the velocity with its free-stream value U,, the density 
and temperature by their respective values a t  the level of the plate (pa and To), 



Horizontal boundary layers in stratij?ed $om. Part 1 499 

and the pressure by the dynamic head (poUg). The three dimensionless para- 
meters appearing in the above equations, the Froude number FA, the Prandtl 
number Po, and the Reynolds number RL are defined as 

The equation of state (4) denotes that the fluid is inconipressible in that changes 
in pressure induce negligible changes in density. This is consistent with the 
restriction of the analysis to low speed ( M 2  < 1) flows. 

The above equations are written explicitly for thermally stratified flows, but 
they also describe molecularly stratified flows if T is replaced by the mass fraction 
of the biasing species and the Schmidt number is substituted for the Prandtl 
number. 

+.+ 
FIGURE 1. A schematic of the flow model. 

The structure of the velocity field above the plate is studied first for the 
limiting case of a large Prandtl number. In this limit (Po-+co), the diffusion of 
heat can be neglected and the energy equation reduces to 

(q.V)T = 0, ( 6 )  

(q.V)p = 0. (7 )  

or by use of the equation of state (4), 

The diffusive case (arbitrary Prandtl number) is studied in part 2 of this analysis. 
Combining (1) and (7))  the continuity equation reduces to the incompressible 

form v * q  = 0. 

Assuming the plate is infinitely wide so that the flow can be taken as two-dimen- 
sional, (8) permits the introduction of a stream function @ defined by 

Equations (6) and (7 )  can then be integrated to yield 

T = T(@) and p = p ( @ ) .  (10) 

The analytic forms of p($ )  and T($) are determined by the boundary conditions 
far upstream of the plate. Results (9) and (10) provide a great simplification and 

32-2 
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permit the system of equations (21, (7)  and (8) to be written in terms of a single 
equation for the stream function II.. 

Considering a density stratification given by 

p(x+- m, 2) = p,(z) = e-Pa = e--(PoL)xdL, (11) 

and invoking the Boussinesq approximation, the vorticity equation is obtained 
in the form 

V2*+Ru&kz = 0, (121 

a 
ax where L(2, z ,  yk) = $,-- 

The operator L(x,  x ,  $) appears extensively throughout the succeeding analysis 
and, for convenience, is written in shorthand form where the symbols in the 
parenthesis indicate the horizontal and vertical co-ordinate variables and the 
dependent variable of the operator in that order. The parameter RuL represents 
the Russell number, a designation originally ascribed by Miles (1968). It is 
defined as 

where 

N denoting the intrinsic frequency. Two independent parameters appear in (12); 
the first parameter, R:', scales the viscous termsrelative to  the inertia terms, and 
the second, Rug, scales the buoyancy term relative to the inertia terms. Their 
relative magnitudes can be expected to play an important role in determining the 
flow structure in the vicinity of the plate. 

The boundary conditions applicable to (12) for the problem depicted in figure 1 
are 

$ ( X , O )  = 0, (x < 01, 

@ ( X , O )  = $, (X ,O)  = 0, (0 6 x < L ) ,  

$,(x+-m,z) = @a(2,z+m) = 1 .  

(16) 

and 

We now seek a uniformly valid first approximation to  the solution of ( la) ,  
subject to  the conditions (16)) for large Reynolds numbers but with the Russell 
number varying from small to large values. 

3. The boundary-layer approximation 
Consider first the flow region in the immediate vicinity of the plate where 

viscosity has a first-order effect. Anticipating that the vertical scale of this 
region is small relative to the horizontal length of the plate, we introduce the 
boundary-layer transformation 

y = Z / B ,  6 =s(RL, RuL) 6/L 1, 

and $(x, 4 = e Y 2 ,  Y ) ,  (17) 
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where E is a function of the parameters that appear in the differential equation 
(12). The functional form of E is determined by requiring the coefficient of the 
highest order viscous term to be unity and all remaining terms in the vorticity 
equation to be of order unity or smaller. 

Introducing the transformation (17) into the vorticity equation (12) yields 
the boundary -layer equation 

Buoyancy contributes to the vorticity balance in the boundary layer in proportion 
to  the square of the Russell number based on the boundary-layer thickness 6,  
since 

The Russell number based on a representative vertical dimension of an obstacle 
characterizes the structure of the flow over the obstacle (cf. Long 1953, 1954, 
1955, 1959; Miles 1968) and, when that Russell number becomes large, the flow 
is blocked upstream of the obstacle. 

Two limiting cases of (18) are now considered. First, when the Russell number is 
small (small stratification, RL > Rug), the boundary layer is characterized by a 
balance between the inertia and viscous terms with the familiar scale 

E = eiiv = RE$. (20) 

The buoyancy term is then of order (RukIR,). Writing the stream function as a 
perturbation sequence in E ,  

Y ( x ,  y; 8 )  = Y(1)(x, y )  +a(s)Y(Z)(x, y) + ... ) (21) 

and substituting into (18), we obtain for W) the equation 

This equation can be integrated once with respect to y to yield the Blasius 
equation (cf. Rosenhead 1963, p. 222). The solution, YB, say, obtained by means 
of the similarity transformation 

y = -  Y 
X+' 

Y(')(x, y) = Y B  = x'fl(y)> (23) 

is well-known. A property of YB which has important consequences in the 
subsequent development is that the solution is not uniformly valid since 

or 
(24) 

The second case we consider is the limit of large Russell numbers (large 
stratification, RL < Rug). The boundary-layer scaling is then given by 

E = ebV = (R,Rug)-*. (25) 
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Bince inertia terms are then of order (RtIRu,), the first-order boundary-layer 
vorticity equation becomes 

which corresponds to  a balance between the diffusion of vorticity and the baro- 
clinic generation of vorticity. Equation (26) was first derived by Long (1959) in 
his analysis of a viscous wake upstream of an obstade. Later, a similarity solution 
t o  (26) was obtained by Martin & Long (1968) describing the boundary layer on a 
horizontal flat plate. They showed that, in order to obtain a physically meaning- 
ful solution to  the parabolic equation (26), the direction of the time-like variable 
x had to be reversed, leading to  a boundary layer with upstream growth and an 

5 =  1--x, upstream wake. If we let 

(26) ypL1’ - y r c ~ )  
VUYU = 0, 

so that Yg)+Y$juU = 0, 

the similarity solution is of the form 

?] = y/& 

w ( z ,  y) = !r1, = z:fl (q). (27)  

Their solution, YL, is uniformly valid in that the vertical velocity approaches 
zero exponentially fast a t  the outer edge of the boundary layer. 

A useful representation of the above results which clarifies the interplay 
between the two parameters RuL and RL is obtained by replacing the Russell 
number by a power of the Reynolds number, 

R u ~  = Rg. (28) 

The vertical scale e of the first-order boundary layers for the inertia-viscous 
balance (22) and the buoyancy-viscous balance (27) are then given by 

ei7, = RE$, 
- R-&(N-kl) 

€bo - L 9 

(29) - ‘bu - - ~ $ 1  I L ) .  

4 u 
so that 

Using the latter relation, we can delineate three distinct boundary-layer types 
depending on the relative magnitude of the Russell and Reynolds numbers. 
For n < 1, eiiv < ebo and the first-order boundary layer is the Blasins one (221, in 
which convection and diffusion of vorticity are balanced. When n > 1, ebv < ciiv, 
and the first-order boundary layer is described by Long’s equation (27). The 
third boundary-layer type occurs when the condition n = 1 is satisfied. In  this 
case eiv = ebv and convection, diffusion, and baroclinic generation of vorticity are 
all of equal order in the boundary layer. The governing first-order equation then 
becomes 

We refer to this case as the critical boundary layer since it is transitional between 
a downstream growing boundary layer (n < 1) and an upstream growing boun- 
dary layer (n > 1). A similarity solution of (30) is possible only for the case of an 
accelerated flow (U,  N &). 
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The above three equations, (22)) (27), and (30) describe all the possible first- 
order boundary layers on a horizontal surface in a stratified flow. Their classifica- 
tion depends strongly on the relative magnitude of the Russell and Reynolds 
numbers. To obtain a uniformly valid approximation to the entire flow structure, 
however, we must also examine the outer flow, to which the solutions of the above 
equations must match. 

4. The outer flow 

(28) and equation (12). The stream function expansion for the outer flow is 
I n  considering the outer flow, we use the Russell-Reynolds number relation 

$(x, 2 ;  6 )  = z +a,(€) ? p ( X ,  2 )  f . . . , (31) 

where the first term on the right describes the zeroth-order motion. The gauge 
function is equal to e and takes on the value dictated by the first-order 
boundary layer as given in (29). Substituting the above expansion into (12) 
yields the following equation for the outer flow 

Examining this equation, we again find that there are three different cases 
depending on the value of the exponent n, i.e. on the magnitude of the Russell 
number. When n < 0, the last term on the left-hand side is smaller than unity 
and, in fact, vanishes in the limit (RL-to3). The first-order outer flow is then 
governed by the equation 

(33) 

The outer flow in this case is determined by a balance between the inertia and 
pressure forces while the buoyancy and viscous terms appear only in higher order 
equations. When n = 0, the inertia and buoyancy terms are of equal importance, 
and the first-order outer flow is described by the equation 

a 
- vzyw = 0 (7% < 0). 
ax 

The stratification is now sufficiently large that the boundary-layer displacement 
effect renders the baroclinic generation of vorticity a first-order role in the outer 
flow. Thirdly, when n > 0, the buoyancy term in equation (32) dominates, and 
the first-order flow is governed by the equation 

= 0 (n > 0). 
a p )  
ax 

__ (35) 

This relation is analogous to the Taylor-Proudman theorem in rotating flows 
and expresses the fact that the constraining influence of stratification is suffi- 
ciently large to inhibit vertical motions. The outer flow is then in hydrostatic 
balance regardless of the boundary-layer displacement effech. 
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An incompatability in the above set of equations is immediately apparent. 
For n < I ,  the first-order boundary layer is described by the Blasius equation 
which requires that the first-order outer flow satisfy the matching condition 

@(')(x, 0) = - 1 . 7 3 0 ~ 4  (n < 1).  (36) 

However, for n > 0 the outer flow is governed by (35), which clearly does not 
admit a solution satisfying condition (36). Hence, we must conclude that for 
0 < n < 1 either the steady flow breaks down into some unsteady structure or a 
more complicated coupling exists involving a n  intermediate layer through which 
the Blasius solution and the solution @(I) = 0 of (35) can be properly matched. 
We assume the latter to be true and re-examine (12) and (18) in the parameter 
range 0 < n < 1. For n > 1, no difficulty occurs since the boundary-layer solution 
?,hL from (27) is uniformly valid. 

5. The intermediate layer 
Examining the boundary-layer equation (22) and the outer-flow equation 

(35), i t  is clear that  the outer flow is governed by a pressure-buoyancy (hydro- 
static) balance, while the boundary layer is characterized by a balance between 
the inertia, pressure, and viscous stress terms. The importance of the buoyancy 
term must diminish as one approaches the plate from the free stream, and the 
importance of the inertia terms must diminish as one proceeds away from the 
plate toward the free stream. Intuitively then, one expects that a region exists 
between the boundary layer and the external flow wherein an inertia-pressure- 
buoyancy balance occurs. 

To derive the correct first-order approximation to the flow in the intermediate 
region, we introduce the transformation 

A 

and ?/?(., 2) = (e/a)Yl'(z, @). (37) 

Substituting (3'7) into (12) we obtain the equation 

Choosing CT so that a proper balance of terms is maintained leads to the condition 

g = R-#l-n), L (39) 

whereby the inertia and buoyancy terms are balanced and the viscous stress 
terms are a t  most of order gZ. The characteristic vertical scale AI of the inter- 
mediate region is 

A I / L  = (./a) = R Z ~ I ~  (0 < n < 1). 

When n = 0, the intermediate layer contains the entire outer flow and, as the 
stratification is increased (increasing n),  the vertical extent of the layer decreases 
until it is completely contained within the primary boundary layer when n = 1. 
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Thus, an intermediate region described by the scaling (40) and equation (38 )  can 
be defined. However, to conclusively demonstrate the existence of a double 
structure for 0 < n < 1, it is necessary to show that solutions of ( 3 8 )  are possible 
satisfying the conditions 

A h 

W)(X, 0 )  = - 1.730xt and W ( x ,  co) = 0. ( 4 1 )  

This topic has been considered in detail by Redekopp (1969), who demonstrated 
that such solutions are impossible unless the horizontal co-ordinate is scaled 
along with the vertical co-ordinate. The x scaling that is required is exactly 
equivalent to the z scaling, i.e. 

(0  < n < 1). 

This is the only scaling which allows a consistent matching between the boundary 
layer and the outer flow. Observe that when n = l , B  is of the same order as the 
boundary-layer thickness, which suggests that perhaps the complete Navier- 
Stokes equations are required to describe the n = 1 case. This presents a plausible 
explanation as to how the transition between the two parabolic cases ( 2 2 )  for 
(n < 1) and (29) for (n > 1) is accomplished. 

A justification for the scaling ( 4 2 )  is provided by the following consideration. 
Outside the primary boundary layer, the representative length for the flow is no 
longer that of the body ( L ) ,  but the characteristic wavelength of internal waves. 
This is precisely what the scaling ( 4 2 )  accomplishes, as can be seen by defining a 
length h equivalent to the length of a wave oscillating at  the intrinsic frequency 
N and moving with velocity Uo, 

Rescaling the x variable with h we obtain 

The order of magnitude of the viscous terms is then 

€(T = Ril+!zn (44)  

which is of order ( R i l )  as in the case of homogeneous flow when n = 0 and of order 
( R Z ~ )  when n = 1. 

The stream function expansion for the intermediate layer is of the form 

where the form of y(RL) is chosen so that q ( Q ( 2 , g )  matches to the Blasius solution 
Y,. Carrying through the matching yields 

and @(l)(2, 8 = 0 )  = - 1.7302.6. 



506 

The first-order equation for the intermediate layer then becomes 

R. E .  Kelly and L.  G .  Redekopp 

This equation is applicable for the parameter range 0 < n < 1. Its form, together 
with the boundary conditions, is identical to the first-order equation for n = 0. 

6. The flow due to boundary-layer displacement 
In  this section we present the solution for the first-order outer flow induced 

by the displacement effect of the Blasius boundary layer. Since the exact shape 
of the displacement body in the downstream wake is unknown, we calculate the 
outer flow as if the plate were semi-infinite. 

For Russell numbers less than unity (n < O), the outer flow is potential (equa- 
tion (33)), and the solution satisfying the matching condition (36) is given by 
Van Dyke (1964, p. 134). It can be written in the form 

@')(Z,Z) = -0.865 ( ( x + ~ x ) ~ + ( x - ~ z ) & )  = - 1-730r~c0~ gH. (48) 

For 0 6 n < 1, the outer flow is described by the Helmholtz equation (equations 
(34) and (47)) which we write in the form 

V2q5+a2q5 = 0, 
with the boundary conditions 

(49) 

q5 = o(x) as (xZ+z2) +GO, 

$(x,O) = 0 for x < 0, 

and $(x, 0) = - 1.730~8 for x > 0. (50) 

It is understood that (2, Q) are substituted for (x, x) when 0 < n < 1 and that $ 
denotes either or %l) depending on the value of n. The parameter a is included 
to indicate explicitly the role of the Russell number. 

The solution of the Helmholtz equation describing the flow of a stratified 
fluid over various shaped obstacles has been the concern of a number of investi- 
gators, particularly as it relates to the phenomena of internal waves in the lee 
of mountain ranges. Queney et al. (1960) and Miles (1968) have given compre- 
hensive reviews of the existing solutions. For the solution of the boundary-value 
problem (49) and (50), we follow the development by Graham (1966) for the flow 
over an arbitrarily shaped slender body, Graham's solution is given in the form 

where f ( x )  is the dipole density and #,(x, x) denotes the solution of (49) for an 
isolated dipole of strength b 
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In  the framework of small disturbance theory, which is clearly applicable, the 
dipole density is related to the vertical perturbation velocity w(l) a.t the altitude 
z = O b y  

,f(z, o) = j: w(1)(5, = +a(l*730~1). (53) 

Note that the dipole strength depends directly on a, or, using the basic parameters 
of the problem, the Russell number Ru,. This reflects the fact that the scale of the 
flow outside the boundary layer must change as the Russell number increases. 
Since the boundary-layer displacement is independent of the stratification to this 
order, (53) requires that the independent variable x be scaled in such a way that 
the dipole strength is always comparable to the magnitude of the boundary-layer 
displacement velocity w(l)(z, 0), even when the Russell number is large (0 < n < 1). 
This is precisely what the intermediate layer scaling (43) accomplishes. 

Substituting the results (52) and (53) into (51), the solution for #(x, z )  becomes 

x sin 

The first term, which is identical to the solution (48) for potential flow, derives 
from the integration of the first term in (52). The effect of density stratification is 
then contained solely in the integral term of (54). 

The integral and sum in (54) were evaluated numerically by integrating 
between the limits < = 0 to 5 = 100 and taking ten terms of the sum. An upper 
limit of ten for the summation was chosen because it corresponds to approxi- 
mately a ten-fold decrease in magnitude between the first and tenth terms. 
Since there is no characteristic geometrical length for a semi-infinite plate, all 
lengths are scaled by the stratification length 

Numerical values were computed for x ranging between x = - 5 and x = 20 in 
increments of Ax = 0.2 with z ranging between z = 0-25 and z = 3.0. The first- 
order, uniformly valid solutions for a = 1.0 and Reynolds numbers of 100 and 
1000 are shown in figure 2, where 

$(x, z )  = z + €$(1’(2,Z) + €(Y - Y ( l ) ( X ,  y)), 

and 

No wave pattern appears and the streamlines exhibit the same general shape that 
exists for homogeneous flow. This is somewhat surprising in light of Lyra’s 
(1943) solution for the flow over a semi-infinite plateau (forward facing step) 
which shows a very distinct pattern of waves. A possible explanation for this is 
that there is a critical bluntness for a monotonic, semi-infinite body which must 
be exceeded if waves are to be generated. For the flow over a finite flat plate, the 
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thickness of the displacement body decreases downstream of the trailing edge of 
the plate and it is quite likely that a wave pattern would appear in the downstream 
flow field. 

Another interesting feature of the solution (54) is that the horizontal pertur- 
bation velocity vanishes as z tends to zero indicating that there is no coupling 
between the first-order outer flow and the second-order boundarylayer. It is worth 
noting that a coupling between the outer flow and the second-order boundary 
layer does exist when the non-Boussinesq terms are included in the outer flow 
equations. As will be demonstrated in part 2 ofthis analysis, a coupling enters via 
the:thermal field when diffusion is allowed, even in the Boussinesq approximation. 

3.0 - 
2.5 - 

I I I I J 
20.0 

-0.5 I 
-5.0 0 5.0 10.0 15.0 

z = 

FIGURE 2 .  The first-order streamline pattern for the case n = 0. -, streamlines for 
Rg, = 100; - - -, streamlines for Rga = 1000. 

7. The second-order boundary layer 
In  the parameter range 0 < n < 1, the boundary-layer expansion is given by 

$(x, Z) = RL*[Y(')(X, 9) + a(RL)Y2)(x,  ZJ) + ...I, 

@(x, Z) = RE*%[@ + Rig+inY(l)(x, ZJ) + . . -3. 

(57) 

(58) 

and, from (45) and (46), the corresponding outer-flow expansion is 
A 

Substituting (57) into the boundary-layer form of the vorticity equation (18)) 
we obtain the equation 

If there is a forcing of the second-order boundary layer arising from the first- 
order outer flow @(I)), the gauge function a is given by 

On the other hand, the forcing arising from the baroclinic term requires that 

M. = R2-I. (Gob) 
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The contributions from these two forcing effects are equal when n. = 8. When 
n < +the baroclinic generation term has no influence on the solution to first order. 
However, when n > Q the second-order boundary-layer contribution due to the 
baroclinic generation of vorticity is more significant than the correction to the 
outer flow due to the displacement effect of the first-order (Blasius) boundary 
layer. A uniformly valid solution to first order, then, requires that Y(z)(x ,  y) be 
evaluated for Q 6 n < 1 using (59) with homogeneous boundary conditions and 
a given by (60b). For the flow over a flat plate, Y!(2) has the same form throughout 
the range 0 < n < 1 since the displacement induced horizontalvelocityvanishes at 
the plate surface (at least in the Boussinesq approximation) so that the boundary 
conditions and the differential equation are the same for the entire range. 

Using the Blasius solution (equation (23)), a similarity solution of (59) is 
possible and has the form 

wheref,(q) satisfies the equation 

(61) Y(”(X, Y) = @f2(7), 

The forcing term on the right-hand side is known from the Blasius solution and 
corresponds to the streamwise derivative of the temperature as expressed by (10). 
It is equal to the negative of the first-order vertical velocity and, therefore, 
approaches a constant value as q becomes large. Consequently, (62) reveals that 
the second-order shear approaches a constant for large 7 

lim f” = - lim (fl-7f;) = 1.730. (63) 
7-a 7-+a 

This violates the definition of a boundary layer and indicates that another inter- 
mediate layer must exist in which the shear decays to zero. It appears that the 
same difficulty is encountered in higher-order terms for n < 0 as well. We are 
investigating this problem further in an attempt to resolve the difficulty (solu- 
tions for the second-order boundary layer for Prandtl number of order unity are 
given in part 2). 

8. Summary 
We have found that two characteristic parameters describe the boundary- 

layer flow of a stratified fluid, the Reynolds and Russell numbers, and that their 
relative magnitude define three different regimes of flow. These regimes are given 
by (i) Ru, < O(l ) ,  (ii) O(1) 6 RuL < O ( R i ) ,  and (iii) RwL > O ( R i ) .  The ranges of 
applicability of each of these regimes are shown schematically in figure 3. In the 
first case the inner flow is the familiar Blasius boundary layer and the outer flow 
is potential. In  the second case, the primary boundary-layer flow is still described 
by the Blasius equation, but an intermediate region exists in which the flow 
induced by the displacement effect of the boundary layer adjusts to a parallel 
outer flow. Both dependent variables must be scaled with the wavelength of 
waves oscillating at  the natural frequency and moving with the free stream 
velocity in order to obtain a consistent representation of the outer flow in this 
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r6gime. In  the third case, the boundary layer changes from one with downstream 
growth to one with upstream growth. The upstream flow is then changed and, in 
order to maintain a balance between the diffusion of vorticity and the baroclinic 
generation of vorticity, the streamlines must diverge in the downstream direction 
and an upstream wake appears. 

M 
0 
4 

10 r 

8 -  

* Critical outer n=0\ 
flow characteristic 
4 
1 2 3 4 5 6 7 8 9  

-2 

1% RL 

FIGURE 3. The various flow regimes in Russell number-Reynolds number parameter space. 

L= L, 

I I 
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FIGURE 4. The qualitative effect of the plate length on the critical (1% = 1) boundary-layer 
flow characteristic. 

Another useful representation of the flow is obtained by writing the Russell- 
Reynolds number relation (28) in terms of the running length x1 

The magnitude of the Reynolds number based on the total plate length and the 
relative magnitude of the Russell and Reynolds numbers (characterized by n) 
define the slope of the flow characteristics in the two-dimensional parameter 
space Ruzl - RZ1. Suppose we observe the flow at a fixed position on a plate, which 
we denote as the point Q in figure 4. Furthermore, suppose that this point lies 
below the critical boundary-layer characteristic (n = 1) for a plate of length 
Ll so that the boundary layer grows in the downstream direction. Then, if the 



Horizontal boundary layers in stratiJied $ow. Part 1 511 

plate length is increased to L,, L, > L,, the slope of the critical characteristic 
decreases and we see that, if L, is sufficiently large, self-blocking occurs and an 
upstream wake and upstream growing boundary layer appear. Hence, for given 
flow conditions, one can always find a plate sufficiently long so that blocking 
occurs. 
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